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ABSTRACT
Intelligent Transportation Systems (ITS) has been devel-
oped to aid drivers and other road-users to make a better
travel decision. In recent years, many research efforts have
been devoted in this field. Being one kind of time-series
data, we can analyze the traffic data following the general
aspects of studying time-series, which contains the analy-
sis of periodicity of many kinds. This work highlights the
study on the (long-term) multiple periodicities that could
be found in traffic data while also considers more specific
aspects such as unexpected short-term patterns, spatial re-
lationship and feature correlations. Thanks to the periodic-
ity of traffic data, most experienced drivers can tell how the
traffic state will be on the road with given specific time and
location. We aim to propose an approach with many of the
above aspects to reach a quality traffic speed forecasting.
We choose Gaussian process regression as the base model to
realize the approach. Given the forecasting that considers
all the above aspects, we enjoy the speed forecasting per-
formance with MAE equal to one to two mph at its peak
performance for a challenging speed forecasting 30-minute
ahead of the current time.

Keywords
Gaussian process, Intelligent Transportation Systems, peri-
odicity, traffic forecasting.

1. INTRODUCTION

1.1 Motivation
Accurate and real-time traffic state forecasting has been

a critical problem in Intelligent Transportation Systems. In
general, traffic data contains complex patterns which could
be hard to fully understand and to predict. The traffic data,
as one kind of time-series data may contain periodic patterns
that repeat continuously through time. Knowing the rush
hours in 8AM morning and 5PM evening everyday gives a
common sense periodic pattern for road-users like us to avoid
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traffic congestion for efficient commuting between homes and
offices. To consider a longer period of repetitive patterns, we
may see late rush hours on Monday morning and early rush
hours on Friday evening which happen in a weekly basis. In
general, a robust prediction model should be able to under-
stand multiple periodic patterns that are hidden in the data
for traffic forecasting. In this work, one of the main goals is
to propose a multi-periodicity model that can integrate the
hints from multiple periodicities for traffic speed prediction.

Aside from the various periodic patterns, traffic data is
often highly dynamic, and it is not uncommon that we see a
sudden change in traffic state at any moment. These changes
might be temporary, but the effect is usually significant. A
little change in one vehicle speed may affect the overall traf-
fic speed in the interconnected segments on the road. We
call the patterns the short-term patterns and the periodic
patterns that we discussed in the previous paragraph the
long-term patterns. Other than the short-term patterns,
to further enhance the traffic forecasting, we can consider
the spatial relationship between data collecting sensors if
we know the traffic information from more than a single lo-
cation. Also, we can rely on collecting more features, such
as occupancy and flow that could be related to traffic speed
to help the traffic speed forecasting. In this work, we aim to
consider all the above complex patterns as well as the mul-
tiple periodic patterns for a robust traffic state forecasting.

We adopt Gaussian process [11] as the key method to
build our forecasting model. Given the methodology, we
have the mechanism to integrate the information from mul-
tiple periodicities, short-term patterns, spatial relationship,
and feature correlations in a single forecasting model. Fol-
lowing the maximum likelihood principle, we look for the
best parameter set for prediction given massively historical
data for training. We use the conjugate gradient method
to achieve the optimal likelihood. To deal with the massive
traffic data, we also propose a mechanism that can consider
both the short-term and long-term data simultaneously and
the mechanism can decide when to acquire additional data
and to re-train the model to keep the most recent state in
real-time forecasting. The overall methodology is designed
for traffic state forecasting; however, the general framework
can be used for other time series data of many kinds as well.

We evaluate the proposed model on a public San Diego
ITS sensor data from RDE dataset collections [12]. It is a
public data resource that is continuously maintained and we
can expect massive data collection for as accurate as possible
prediction. To speak of traffic speed prediction, due to the
high dynamicity in the traffic data, sometimes even using the



Figure 1: Model Framework

current traffic state value as the prediction value can yield a
result with relatively low error. This is more likely to be true
when we only predict the traffic in a short period, say, next 5
minutes traffic state. According to one of the methodologies
used by INRIX1 to predict travel time [9], it is meaningful to
predict the traffic 30 minutes ahead of time. By having the
next 30-minute traffic speed forecasting result, commuters
may have enough time for them to re-consider their original
traveling plan and make the decision about changing routes
or staying in the original path to reach the final destination.
Based on the experiment results, we show that the proposed
method can reach one or two mph MAE on the San Diego
ITS dataset.

1.2 Related Work
Various methods and approaches have been founded in

recent years to continuously improve the reliability and ac-
curacy of road traffic state forecasting. One of the common
methods used for time series, especially traffic data is Au-
toregressive Integrated Moving Average (ARIMA) model [8,
2] along with its variations, seasonal ARIMA model [6].
Kalman filtering [1, 18] has been proposed from a data-
driven approach aspect for traffic forecasting. Gaussian Pro-
cess Regression (GPR) [19, 3, 17, 4] has also been researched
to model traffic data despite its cubic time complexity. Aside
from GPR, other kernel-based approach such as support vec-
tor machines [16] has also been developed to forecast traffic
conditions. In recent years, deep learning (including neural
networks) approach has also been proposed [10, 14, 21, 20] to
deal with traffic data when massive data is available. Other
traffic speed forecasting methods are also developed [7, 5,
15] to specifically tackle the traffic speed related issues.

1.3 Research Framework for Massive Data In-
puts

Overall, the proposed method contains a framework that
can deal with online prediction with massive data inputs
while maintaining an acceptable level of accuracy. After an
initial preprocessing on the raw data, we operate tempo-
ral aggregation before the model training. By doing it, we
hope that the periodic patterns become more obvious with-
out losing too much details. Aggregation can also save some
space and reduce time complexity by reducing the number
of data which we want to include in the model. On the side,
we optimize the parameters periodically to keep the model
close to the most recent situations. The details are shown
in Figure 1.

The rest of the article is organized as follows. Before we go
on to introduce the proposed method, we discuss the main

1INRIX (http://inrix.com/) is a company which deals with
traffic data using Big Data and Internet of Things (IoT)
technology.

Figure 2: Different aspects of road traffic data

focused problem in Section 2. Afterwards, in Section 3, we
elaborate the details of the proposed framework. There are
various models that we discuss for the complex patterns in
the traffic data: the multi-periodicity model, and the mod-
els considering short-term inputs, spatial relationship and
feature correlations. The experiment results are shown in
Section 4 and in Section 5, we summarize our presentation.

2. TRAFFIC SPEED FORECASTING IN IN-
TELLIGENT TRANSPORTATION

In traffic state forecasting, it is one of the most common
approaches to use the past data to predict what could hap-
pen in the coming moments. However, the volatility in the
traffic data has been a big issue to tackle for such a data-
driven approach. The road traffic data, as one kind of time
series data contains several different aspects which we can
consider them individually or plurally in its data pattern
explanation. To be able to effectively predict what could
happen in the future or near future, we usually consider
the temporal relationship, the spatial relationship and fea-
ture correlations in the data, as shown in Figure 2. In the
temporal relationship, we can consider the short-term and
the long-term bahaviors in the data and for the long-term
behavior, the multiple periodicities is one of the highlighted
points we would like to address in this study. We take turn
to discuss each of the aspects to illustrate what the proposed
method is for this work.

2.1 Periodicity
Periodicity, or a periodic pattern in traffic data, is highly

influenced by environmental factors such as seasons, day-
light, and social behaviors such as working hours. A series
of data like traffic data may contain mixed periodic patterns
due to multiple factors, further discussed below.

Daily Patterns
During the day, people have a good vision of the road, and
therefore they are able to drive in different styles. Moreover,
we can easily observe what could influence the traffic pat-
terns for people to go on and go off from work on weekdays.
During the rush hours, there will almost always be a conges-
tion in some sections of a road. An everyday driver knows
the patterns and can try a detour to avoid the congestion in
advance to save time. This kind of patterns usually repeats
itself almost everyday. When we consider a daily model, we
treat each single day independently and the data from dif-
ferent days but at the same time are aggregated together in
the daily statistics computation.

In Figure 3, we see that there is a drop in traffic speed
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Figure 3: The daily traffic speed patterns on seven
days, a result collected from Nov. 17, 2010 to Nov.
23, 2010.

at around 4 PM almost everyday (especially on weekdays).
The details might be slightly different in different days (and
in different locations), but the overall patterns are similar.
Technically, we can operate a temporal aggregation to group
the data of the same time in a day together across different
days (e.g., several 8AM mornings’ data) to discover the daily
patterns without showing too much details.

Weekly Patterns
Other than the daily patterns, we often observe weekly pat-
terns when a longer time of data are collected. Most business
is run in a weekly basis, therefore, we see its effect on road
traffic also in weekly periodic patterns. Taxi drivers know
how to increase the possibility of picking up potential pas-
sengers at a certain time on a weekday; also, we often see
heavy inbound traffic on Monday morning and outbound
traffic on Friday afternoon or evening when most people
work in town and live out of town. That is to say, we should
be able to distinguish between the patterns of Monday morn-
ing and Friday morning when we look into more details of
the data. By saying this, a good model that considers weekly
patterns should treat the data from Monday morning and
Friday morning differently. That is, the data from the same
time but in different weeks may be aggregated together for
analysis; however, the data from the same time but in dif-
ferent days may be collected separately as they may real
heterogenous patterns caused by different factors.

Let us refer to Figure 4 where we consider a whole week
simultaneously for analysis. By doing it, we can easily ob-
serve different patterns between weekdays and weekend and
between different weekdays sometimes. We notice the severe
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Figure 4: The weekly traffic speed patterns of four
consecutive weeks, a result collected from Oct. 18,
2010 to Nov. 14, 2010.

congestions at Friday 4 PM at those four weeks; however, we
may or may not see the similar patterns at the same time in
some other days in the same or different weeks. In general,
we may see similar patterns for the data that are observed
at the same time in a week but from different weeks.

To effectively predict traffic states in some future mo-
ments, in this work, we would like to consider both the
daily and weekly patterns, the two main periodic patterns
for traffic data analysis which are considered long-term pat-
terns. Also, we take into account the unexpected patterns
or called short-term patterns. To have both, with some ad-
ditional help from the estimation of spatial correlations and
feature correlations, we can build a more powerful model
than before.

2.2 Unexpected Short-Term Patterns
Based on what we observe in the previous section (Sec-

tion 2.1), although daily and weekly patterns are likely to
happen, there are still some exceptions in some days. Usu-
ally these exceptions could be caused by some environmental
factors such as sudden rainfall or snowfall, or by some hu-
man factors such as accidents. Weather factors can cause
unusual drop in traffic speed since the drivers need to slow
down to avoid slipping over the rainwater or snow. This kind
of unusual pattern may last for a few minutes to a few hours.
On the other hand, if the unusual pattern is caused by ac-
cidents or sudden braking, the pattern going from normal
to congestion will fluctuate very quickly but only persist for
a few moments. In Figure 5, we illustrate the unexpected
speed pattern, the current pattern (blue) that is deviated
from the mean value (dashed line) of some other days, taken
from a specific sensor (sensor No. 2 in Figure 8). Going by
this thought, we consider including short-term data in the
model training. Since we want to see the recent trends in
more detail, we collect data with higher sampling rate than
the usual (compared to the long-term data collection).

2.3 Spatial Considerations
Other than the temporal relationships in data, it is inter-
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Figure 5: One day traffic speed pattern with a con-
gestion in the afternoon (blue), which is deviated
from the mean pattern (dashed) that is computed
based on a period of seven days.
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Figure 6: The speed, occupancy, and flow informa-
tion of three nearby sensors

esting to study the spatial relationship in data. Intuitively,
when we want to forecast traffic speed at a location, we can
use the nearest sensors’ data from the focused location to
complete the task. The closer a sensor is to a location, the
more relevant it becomes in general. Additionally, a traffic
state in a section of the road might be similar to the nearby
sections of the same road. For example, if there is a traffic
jam at sensor s, it is likely that there will be similar traffic
jam happened at sensor s− 1 and s+ 1 at the same or simi-
lar time. Figure 6 shows the similar traffic states from three
nearby sensors on I5N highway at November 10, 2010.

2.4 Feature Correlations
To predict traffic speed in some near future moments, we

may rely on some other features to enhance the prediction
accuracy. In reality, vehicle speed could be affected by many
factors. First, drivers may have different preferences in driv-
ing their vehicles. Some drivers like to drive slowly, while
some others like to drive aggressively. Second, the road oc-
cupancy may also affect the traffic speed. On an empty free-
way, drivers are free to choose their own driving speed. On
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Figure 7: The speed, occupancy, and flow informa-
tion on different days

the other hand, on an occupied freeway, drivers are forced
to reduce their speed to some degree.

In Figure 7, we can see the correlation between speed, oc-
cupancy, and flow. When the occupancy is fluctuating, the
speed is also significantly dropping (see the second day). We
can also see that when the occupancy is sigificantly rising,
the flow is also rising, although it rises more slowly. How-
ever, at the third day, we can see that the flow also hits the
same amount around the same time with the second day.
This time, the speed does not drop as much as what we
observe on the second day. The occupancy does not rise
as significantly either. Based on the above observation, we
can say that when occupancy rises, the speed is very likely
to decrease, especially when the occupancy reaches its limit
on a road. On the other hand, we can have a high traffic
flow without having a high occupancy. This means that the
distribution of the vehicles is almost uniform and there is
no road section with too many vehicles crammed together
which cause traffic jam.

3. PROPOSED METHOD
We introduce Gaussian process, the base model that shall

be used to deal with various patterns in traffic data via sev-
eral model variants.

3.1 Gaussian Process Regression
Gaussian process is a non-parametric model as the model

can adjust by itself when the input data and the number of
the input data change. Gaussian Process Regression (GPR)
is a probabilistic model that can solve regression problem
under the Gaussian process framework. A Gaussian pro-



cess [11] is fully specified by its mean function m(x) and
covariance function k(x,x′), where x,x′ denote the data fea-
ture vectors. Given a historical dataset D ≡ {di = (xi, yi) :
i = 1, 2, . . .}, where xi is a data feature vector and yi is its
corresponding value, the objective of GPR is to find a func-
tion f which can describe the relationship between xi and
yi in high accuracy.

Formally, a Gaussian process can be formulated as:

f(x) ∼ GP (m(x), k(x,x′)) , (1)

with the undecided mean functionm(x) and covariance func-
tion k(x,x′). To consider measurement errors from the sen-
sor data, we need to allow some small difference between the
true value and the observed data in the regression problem.
We choose a Gaussian noise model, which is written as:

y = f(x) + ε, ε ∼ N (0, σ2
n) , (2)

where σ2 denotes the noise variance.
One of the key components in Gaussian process is its co-

variance (kernel) function k, which defines the pairwise re-
lation between two feature vectors x and x′. In this work,
we deal with various kinds of data features including occu-
pancy, flow, time, and location. To describe the relationship
between two data points, we take one of the most common
approaches which is the squared exponential function, writ-
ten as follows:

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)TΛ−1(x− x′)

)
+σ2

nδ(x,x
′) ,

(3)

in which δ(x,x′) is the Kronecker delta function, and Λ =
diag(λ2

1, λ
2
2, . . .) is a (diagonal) matrix to control the individ-

ual length-scale of each input variable given to the model.
Since the data features are heterogenous, we use a variant of
squared exponential function which also includes Automatic
Relevance Determination (ARD) (to be discussed later) to
decide the parameters in Λ.

In traffic speed forecasting, given the current traffic con-
ditions x∗ for prediction, the current traffic speed y∗ is pre-
dicted (probabilistically) by GPR as:

y∗ | x∗,X, Y ∼ GP (k(x∗,X)
[
k(X,X) + σ2

nI
]−1

Y,

k(x∗,x∗)− k(x∗,X)
[
k(X,X) + σ2

nI
]−1

k(X,x∗)) ,
(4)

where X and Y contain all the historical data including the
feature vectors X and their corresponding values Y . The
first part in Eq. 4 is the mean function which gives the traffic
speed prediction and the second part provides the prediction
confidence.

Conjugate Gradient Method
Conjugate Gradient method [13] is an iterative method for
solving sparse linear systems. In GPR, both the mean func-
tion and covariance function have their respective adjustable
parameters, which we call the hyperparameters θ. Choosing
the best hyperparameters is one of the challenges introduced
in GPR. However, it is very difficult to guess what hyperpa-
rameters that may offer the best result. We assume that by
fitting the model into the training data with a good choice of
the hyperparameters, we can have the best prediction result
following the maximum likelihood principle. The Gaussian

process log likelihood function is defined as:

logP (f(x) | θ,x) = −1

2
f(x)T k(θ,x,x′)−1f(x)

−1

2
log det(k(θ,x,x′))− |x|

2
log 2π .

(5)

Maximizing this marginal likelihood towards θ fits the
model into the data, and therefore completes the specifica-
tion of the Gaussian process f(x). We use Conjugate Gra-
dient method in order to achieve the optimum.

3.2 Data Selection and Aggregation
The traffic data consists of data of a few features that

are collected in different sensors and at different moments.
The spatial and temporal relationships built in the data im-
plies how we should take advantage of the relationships in
the prediction task. That is also one of the reasons that
we adopt Gaussian process as the key component for traffic
state prediction as the process can naturally describe the
relationships by choosing an appropriate kernel for pairwise
data.

One data item in the traffic data can be written as

x = (x, s, t} ,

with the core features x and the information about the data
collecting sensor s ∈ S for sensor set S and data collect-
ing time t ∈ {1, 2, . . .}. The raw data are collected in a
streaming format for every sensor. We usually operate some
sampling (or smoothing) techniques on the original data for
better efficiency and noise removal. Specifically, we aggre-
gate every m data

xt,xt+1, . . . ,xt+m−1 ,

into one where xt+k = (xt+k, s, t+ k) which are all collected
in a single sensor s for the moments from t to t + m − 1.
The aggregation is done via a simple averaging computation
and the aggregated result is recorded as xi = xt

i = (xti, s, t),
a data feature set for a data item di in D ≡ {di = (xi, yi)},
where xti is obtained from averaging the items in the set
xt, xt+1, . . . , xt+m−1. We repeat the aggregation for n steps
until we have n records of data for every sensor. That is
the training base for the prediction on a single sensor. We
can surely consider the training given several sensors at the
same time.

3.3 Model Building
When we observe a time series data like traffic data, we

might see more than just one periodic pattern. Some say
traffic jam always happens right before evening. Some say it
happens only at Thursday and Friday evenings. In fact, both
assumptions might be true to some degree. Rather than
just considering only one, we try to consider the possibility
of having multiple periodic patterns in our approach. More
than the consideration on multi-periodicities, we also take
into account the short-term patterns as well as the spatial
and feature correlations in the final traffic state prediction.

Regarding to the study on multi-periodicities, we basically
consider two kinds of approaches when we have enough belief
to say that the analyzed data may consist of more than one
periodicity. The first approach is to build multiple mod-
els, with each model has its own periodicity. The output
from these models will then be combined to form the final
result. We call this model Composite-Periodicity model or



CP model, which is made from multiple single-periodicity
model. The second approach is to include all periodic pat-
terns at once in one model. We call this Multi-Periodicity
model or MP model, further discussed below.

We design a framework which allows traffic forecasting in
a streaming fashion using GPR (Figure 1 ). In our method,
we use one Gaussian process each time we do one prediction.
Given the Gaussian process computation barrier, we have to
carefully select our training data and the time for model re-
training. In this framework, we update the model once a
while. When a new data comes, we check first whether our
current model has expired. If the model expires, it will be
updated with a new training data. If the model has yet to
expire, it will be reused for forecasting. By reusing the model
this way, we can save some time from having to rebuild the
model too frequently.

Single-Periodicity Model
First, we define a period p in which it is assumed to have a
periodic or repetitive pattern on given data. For example,
p = one day means that any pattern that happens on one
day will be (almost) repeated in another one day, up to
noises or measurement errors. We work on a modified time
tp as a feature for learning given a periodicity p.

For data time index T = {t1, t2, . . .} and a given periodic-
ity p, we can define an equivalence relation ∼p on T where
two indices tj and tk are equivalent, written as tj ∼p tk if
tj ≡ tk mod p. Given the relation, the equivalence classes
or quotient space of T by ∼p, denoted by T /∼p include the
indices with different remainders if divided by p, written as
T / ∼p ≡ {0, 1, 2, . . . , p − 1}. In reality, if we can choose
the minimum unit in the time domain as one minute, then
p = 1440 for one-day periodicity. In this study, we chose the
minimum unit to be five minutes and p = 1440/5 = 288 for
one-day periodicity.

The index drawn from the quotient space will be added
into the feature set as an additional time index feature ac-
cording to a given periodicity p. Given a pre-decided period-
icity p, the feature set x = (x, s, tp) for the single-periodicity
model has the time information tp drawn from the quotient
space T / ∼p. The result from GPR based on the single-
periodicity model is given by:

y = f(x = {x, s, tp}) ∼ GP (m(x), k(x,x′)) ,

for tp ∈ T / ∼p. We can also work on a slightly different
feature set as:

x = (x, s, t, tp) ,

where t is the original time stamp (without thrown away)
and tp is the time index drawn from the quotient space such
as t could be the absolute time and tp can be the time on
a day for a daily-periodicity model for traffic forecasting.
The difference between the two choices is that the former
combines data of the same time on a day (but maybe with
different days) together in statistics computation while the
latter treat the data from the same time on a day but differ-
ent days differently with a positive distance on time in the
kernel computation.

Multi-Periodicity Model
We can discuss a complex case where we have multiple pe-
riodicities observed in a given data set. For given multi-
ple periodicities p1, p2, . . . , p`, . . ., we can define the quotient

spaces T /∼p1 , T /∼p2 , . . . , T /∼p` , . . . and use them to de-
scribe the data by using a new feature set written as:

x = (x, s, tp1 , tp2 , . . . , tp` , . . .} ,

where tp` is drawn from the quotient space of periodicity p`
and x and s denote the core features and the sensor infor-
mation respectively as before.

For traffic data, we can study the prediction problem
under multiple periodicities such as daily, weekly or even
yearly. To address those periodicities, we can have the data
features written as:

x = (x, s, tdaily, tweekly, tyearly) .

In this case, for instance, two features tdaily’s from two data
should share the same value if two have the same time on a
day (such as 4PM) even they are from different days. Like-
wise, the feature tweekly should have the value ranged from
all moments in a week, such as “8AM on Monday” or “4PM
on Friday”, etc.

Composite-Periodicity Model
We can consider an alternative approach to combine the
information from multiple periodicities, in fact, a straight-
forward approach which computes the weighted average of
the results from several single periodicity models, described
as:

y =
∑
p∈P

wpfp(x = {x, s, tp}) ,

where
∑

p wp = 1 and fp is the regressor that is for the
single periodicity tp.

Adding Short-Term Data
For each of the above models, either with single periodicity
or multiple periodicities, we can add a few most recent data
to the training set for modeling. The augmented data set
becomes:

D ∪Dshort ≡ {di = (xi, yi)} ∪ {(xt−c, s, t− c; yt−c),

(xt−c+1, s, t− c+ 1; yt−c+1), . . . , (xt−1, s, t− 1; yt−1)} ,

for a c period of time to be considered as the short-term data.
As mentioned before, the data in D that are for periodicity
analysis are called the long-term data to be distinguished
from the short-term ones.

Mean Function
Gaussian process is fully specified by its mean and covari-
ance functions. In this study, the mean function m(x) =
m(x, s, t) for GPR is obtained by computing the average of
all the historical data with the same time feature t (and sen-
sor feature s) to be the value for the mean function. Note
that t can be tp with a periodicity p for a periodicity model.

Parameter Estimation
Following the data selection procedure in Subsection 3.2, we
update the hyperparameters θ of the GPR kernel based on
different choices of the training set. The hyperparameters
θ ∈ Θ are saved for each time index tp given a periodicity p
and will be reused for some adjustable period of time before
they get expired and need to be updated. When a data for
prediction has a time index tp, we check whether in the Θ
there is a set of hyperparameters with exact match of the



time index. If any hyperparameters θ have the same time
index tp, the hyperparameters will be used. Otherwise, the
last used hyperparameters right before this moment will be
selected instead. For multi-periodicity models, we consider
the shortest periodicity period to decide the hyperparame-
ters.

4. EXPERIMENTS AND RESULTS
In this section, we present the experiment results for traf-

fic state forecasting based on the proposed method. First,
we introduce the dataset for traffic forecasting evaluation
in Subsection 4.1 and afterwards, we explain the evaluation
method. Finally, we demonstrate the experiment results in
Subsection 4.2.

4.1 Dataset and Evaluation
We chose San Diego ITS sensor data from RDE dataset

collections [12] for evaluation. We selected five sensors’ data
from I5N freeway to be experimented with, as shown in Fig-
ure 8. The data in the set were collected in the year 2010
with five-minute sampling rate. We also used the same sen-
sor set’s data to test our forecasting result. As explained
before, we aim to predict the next 30-minutes traffic speed
starting from November 10, 2010 until November 23, 2010.
To prepare the long-term data, we do hourly aggregation to
the data. The processed dataset consists of features listed
as follows:

• The Core features (denoted by x)

– Flow: Number of vehicles count
– Occupancy: How long the sensor is occupied by

vehicles (in percentage)

• Other Features

– Sensor information: Sensor’s coordinates (in lat-
itude and longitude) or simply sensor index, de-
noted by s.

– Time information: Including the time on a day
tdaily and the time in a week tweekly, for daily and
weekly periodicities respectively.

After all, the traffic speed is the target value we aim to
predict. In most experiments, we find out that the contri-
bution of adding the flow information is limited (also check
Figure 6) and decide to exclude the feature in most of the
experiments.

In all experiments, we evalute the proposed method by
calculating the Mean Absolute Error (MAE) and Mean Ab-
solute Percentage Error (MAPE).

4.2 Results
We take turn to investigate the performance for various

models which include single-periodicity (SP) model, multi-
periodicity (MP) model, the models with short-term data,
and the models with other considerations such as adding spa-
tial information and adding other related features for traffic
forecasting.

Single-Periodicity Model.
Similar moments of the day may have similar traffic con-

ditions even they are from different days; also, similar days
of the week may share similar traffic patterns even they are
from different weeks. Considering the daily and weekly pe-
riodicities in the SP model may show better performance
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Figure 8: The sensors located in I5N where we use
the data collected in them to evaluate the proposed
method.
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Figure 9: The prediction error of SP model with
the daily periodicity for seven different days of the
week.

than the model without such considerations. In this series
of experiments, we use previous several days and weeks for
training to see how the single-periodicity models perform
with the daily and weekly periodicities.

To speak of the SP model with daily periodicity, we dis-
cuss the model given different numbers of days for training.
Given previous one up to 14 days for training, the perfor-
mance on the SP model with the additional feature tdaily is
in Figure 9. As we can observe, the more days for training,
the better the model performance is. More specifically, we
need about two days for training to reach converged per-
formance during the weekend and need about four to seven
days to reach converged performance for the weekdays.
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Figure 10: The prediction error of SP model with
the weekly periodicity for seven different days of the
week.

To speak of the SP model with weekly periodicity, we work
on the model give different numbers of weeks for training.
We experiment the model with previous one to four weeks
of training and the results are shown in Figure 10. The ad-
ditional feature tweekly to be added to the feature set, i.e.,
the time of the week is a time index which starts from Mon-
day 0:00 and incrementally increasing up to before Sunday
23:59.
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Figure 11: Overall prediction error with different
data periods: (a) daily model, (b) weekly model.

We compare the two SP models’ overall forecasting perfor-
mance in Figure 11, with the daily and weekly periodicities.
We can see that the SP weekly model prediction is superior
compared to the SP daily model, even with the same amount
of training data. This implies that considering weekly pe-
riodicity is more helpful than considering daily periodicity.
Note that we have a clear error drop when we collect the
data of seven days for training. It is due to that having
a seven-day data, we collect another day of data of similar
patterns to the current traffic conditions.
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Figure 12: The MAE & MAPE on the CP Model
with the daily and weekly periodicities.

Multi-Periodicity Model.

Table 1: The performance (MAE and MAPE) on
various SP, MP and CP models

Model MAE (mph) MAPE (%)
SP (daily) 2.38 4.04
SP (weekly) 2.25 3.86
MP (daily-weekly) 2.11 3.61
CP (daily and weekly) 2.16 3.70

The MP model considers multiple periodic patterns at
once. In this study, to make use of both daily and weekly
repetitive patterns, we include two time indices in the model:
the time on a day tdaily and the time in a week tweekly. We
experiment using the data for previous seven days and also
for two neighboring upstream and downstream sensors in the
model training. The overall (average) performance is shown
in Table 1. Based on the results, we can conclude that the
SP model with weekly periodicity works better than the SP
model with daily periodicity; also, the MP model with daily
and weekly periodicities works the best among all of them,
even if compared to the CP model with daily and weekly
periodicities (to be discussed next).

Composite-Periodicity Model.
We can simply combine the two single-periodicity models

by weighted average to enhance the prediction performance.
In Figure 12 we see the results from the two SP models with
daily and weekly periodicities combined together with dif-
ferent weights. First, we can see that by combining multiple
SP models using weighted average, we can achieve a better
result. To choose the best weight, we test different weights
on the SP model with daily periodicity from 0.1 to 0.9 and
find out that the best weight is close to 0.4 (and the weight
for the SP weekly model is 0.6). However, the model’s per-
formance is not as good as the MP model’s which considers
both daily and weekly periodicities.

Models with Short-Term Data.
In this experiment, we add some short-term data into var-

ious models to see the result. The short-term data are di-
rectly included and be combined with the long-term data for



Table 2: The MAE and MAPE of the MP (daily-
weekly) model with short-term data.

Data Period MAE (mph) MAPE (%) Time (s)
None 2.056584 3.52 0.033
10 minutes 1.458071 2.54 0.036
20 minutes 1.458075 2.54 0.036
30 minutes 1.410530 2.47 0.037
1 hour 1.410602 2.47 0.037
2 hours 1.410663 2.47 0.037

Table 3: All experiment results for various SP, MP
and CP models.

Model MAE MAPE
(mph) (%)

SP
daily (long-term) 2.38 4.04
daily + short-term 1.77 3.05
weekly (long-term) 2.25 3.86
weekly + short-term 1.70 3.01

MP
long-term 2.11 3.61
long + short-term 1.41 2.47

CP
daily + weekly (long-term) 2.16 3.70
long + short-term 1.65 2.88

model training. We try adding up to two hours of short-term
data and see the performance.

From Table 2, we can see that including short-term data
has a big significance in the forecasting performance. How-
ever, adding more than 30 minutes of data no longer in-
creases the accuracy. We can assume that the short-term
data for more than 30 minutes ago is not very relevant any-
more to the current traffic conditions. To summarize all the
results, we refer to Table 3. The MP model again works the
best among all. Especially, the MAE for MP (daily-weekly)
is decreased from 2.11 to 1.41 if adding the short-term data
into the training.

Spatial Considerations.
The main part of this work is to focus on the study of

multiple periodicities for traffic data. Still, we would like to
explore the performance if we collect the information from
more than one sensor. In this series of experiments, we want
to observe the effect of using multiple neighboring sensors
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Figure 13: (a) The forecasting errors with: (a) dif-
ferent sensor sets and (b) different feature sets.

Table 4: Linear correlation (Pearson’s product-
moment correlation coefficient)

Prev. Speed Occupancy Flow
Current Speed 0.975 -0.559 -0.157

compared to using only one sensor. In the local view sce-
nario, we only use the past information from a sensor s to
forecast the traffic speed at the same sensor s for a future
moment. For the global view, we forecast traffic speed at
sensor s using the information from several neighboring sen-
sors from s such as {· · · , s − 2, s − 1, s + 1, s + 2, · · · } as
well.

In previous experiments, we basically set the features set
to be: (x, s, tperiodicity) for the time index vector given by
tperiodicity for multiple periodicities. Now the same features
are collected from each of the sensors if the sensor is con-
sidered a neighbor of the sensor s. For evaluation, we set
the training period to be seven days and use the daily SP
model as the main method for comparison. The Sensor No.
4 (in Figure 8) shall be used to test how effective the pro-
posed model is. We can observe the experiment result in Fig-
ure 13(a). Using one up to two upstream and downstream
sensors can significantly improve the prediction result.

Feature Correlations.
The performance of traffic speed prediction can be fur-

ther enhanced by knowing some other relevant features’ in-
formation. In this subsection, we investigate the correlation
between occupancy and speed, and also between flow and
speed to decide the best feature set for speed forecasting.
We set the model to be the MP (daily-weekly) model and
use seven days for model training.

What we want to know is whether having occupancy and
flow also aids us in the forecasting. In Table 4, we can
see that the occupancy data will somehow be useful in the
forecasting, and the flow data may not be that useful due
to the weak correlation between the flow and speed data.
Figure 13(b) and Figure 14 show the experiment results
with different feature sets. From the experiment results we
can say that including occupancy information does help the
speed forecasting. However, adding one more feature to the
set, the flow information may not improve the forecasting
result. This might be caused by the weak correlation be-
tween flow and speed. Note that we have a very strong cor-
relation between the previous speed and the current speed.
It suggests that it is appropriate to use only the historical
speed data as well as the spatial and temporal indices for
speed forecasting. That is, we can expect good results from
a process model, such as a Gaussian process without the oc-
cupancy and flow information for traffic speed forecasting.

5. CONCLUSIONS
In this work, we proposed a general framework for traffic

speed forecasting. In the framework, several models have
been demonstrated to show the contribution on traffic fore-
casting. We focus on the study of multiple periodicities
that could be seen in the traffic data, a streaming data
with temporal relationships. Based on our study, the multi-
periodicity model works better than the single-periodicity
and the composite-periodicity models. We have tested the
idea with a daily-weekly multi-periodicity model. The data



Figure 14: Prediction error with different feature
sets and different days in a week.

with multiple periodicities is under a long-term considera-
tion, which also needs to add a short-term data to have the
best performance for speed forecasting as the traffic speed
is often highly dynamic. Other than the temporal relation-
ships, we consider the spatial relationship, also, the feature
correlations in the data for speed forecasting to further im-
prove the result. In the end, the proposed model outputs a
peak performance for its MAE equal to one to two mph in
the error, which is good enough for real applications.
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