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Abstract—Drivers dream of foreseeing traffic condition to
enjoy efficient driving experience at all times. Given the
historical patterns for different locations and different time,
people should be able to guess the possible traffic speed in
a near future moment. What is difficult and interesting for
this task is that we need to filter the useful data that could
help us for the next moment traffic speed prediction from a
massive amount of historical data. On the other hand, the
traffic condition could be highly dynamic and we can only
give a reliable traffic prediction by using the most updated
model for prediction. This implies that frequent retraining is
necessary. To conquer the task, we propose a lazy learning
approach for traffic speed prediction given massive historical
data. The approach integrates the kNN and Gaussian process
regression for efficient and robust traffic speed prediction. kNN
can help us to select the most informative data for Gaussian
process Regression using a big data framework. Thanks for
the most recent progress of big data research, the processing
of massive data for prediction in close to real time has become
possible now compared to any time in the past. We aim at using
a Hadoop framework for the prediction given heterogeneous
data including traffic data such as speed, flow, occupancy, and
weather data.

Keywords-Big data; Gaussian Process Regression; Hadoop,
Intelligent Transportation Systems (ITS); K Nearest Neighbors
(KNN); MapReduce;

I. INTRODUCTION

Letting drivers know how long to drive from one place to
another is as important as any other daily tasks. Based on the
data driven approach [1], we can use the past data to guide us
to estimate the possible time to take in a journey. To estimate
the travel time, we can focus on predicting traffic speed for
a given time and location and compute the total elapsed time
in the journey. Experienced drivers know how to avoid rush
hours and bottleneck routes to shorten his traveling time.
Clearly, how a driver is judged as an experienced one is
highly related to how much past experience the driver has.
One of the ultimate questions to ask is: how well can we
dynamically predict the traffic speed in real time or close to
real time given all the past data?

In an Intelligent Transportation System (ITS), we con-
tinuously collect data such as speed, flow and occupancy
to monitor traffic conditions at all times. Based on the ITS
information, decision makers can study traffic congestion,
bottleneck routes, and various types of incidents to judge
how a specially designed route topology, signal control,

ramp control, etc. can achieve high traffic efficiency. Most
of the time, the decision is made time dependent. Between
rush hours and non-rush hours, between weekdays and
weekends, the traffic patterns are generally different. To
design a smart ITS, researchers and technicians around the
world have started to focus on collecting data for analysis
and continue on improving traffic efficiency. In this work,
given a location, we aim to predict traffic speed efficiently
using all available historical data related to the prediction. To
have a better prediction result, we would like to dynamically
change the prediction model so that the prediction can be
as updated as possible given different rush hour conditions
at different time. Moreover, we would like to integrate
various factors that can influence traffic patterns to provide
as accurate prediction result as possible. We manage the
massive historical ITS data using the MapReduce-based
Hadoop framework.

To master the massive historical data for efficient speed
prediction, we have to carefully select limited informative
data for training given limited computing resources. Some
issues must be considered for this problem, including:

1) As mentioned above, traffic speed is highly dependent
on time. People all know that driving experience
between rush hours and non-rush, also between week-
days and weekends are different. We should be able
to predict traffic speed for different time. Given that
need, we build different profiles for both rush hours
and non-rush hours, for weekdays, weekends, even
special holidays to make the prediction reliable.

2) Due to the above reason, we have to collect data
as many as possible for many different kinds of
occasions. Robust prediction is usually based on an
as complete as possible feature set and by using
more features, in general, we need more data to make
learning possible [2]. After all, we have to deal with
large-scale data, large in the sense of data number and
the number of features. Intuitively speaking, when the
learning problem is too “case-by-case”, we have to
collect a large amount of data to make the learning
robust.

3) The data necessary for speed prediction have their
natural spatial and temporal relationships. Traffic data
in this moment and in the previous moment are usually



correlated. On the other hand, traffic data in nearby
locations are also usually correlated. Traffic congestion
in the highway may also introduce traffic congestion in
the ramps that lead to this highway, or even the local
area near the highway entrance. Knowing the above
facts, a model that can perform well for speed predic-
tion must be able to consider these two relationships.

4) Both ITS and non-ITS data can influence the traffic
speed. How the traffic is at a time of a day depends
on not just the ITS-related factors such as how many
cars on roads or how fast drivers drive, etc. It also
depends on weather conditions such as whether it is
raining or snowing and how fast local officers try to
deal with the weather conditions, if the conditions
become severe enough to introduce danger. After all,
to effectively predict traffic speed, one must collect
not only the ITS data, but also non-ITS data such as
weather data, local special event schedules, policemen
patrol records, traffic broadcasting or smartphone auto-
routing information, etc. All the information makes up
the database that is needed for speed prediction to be
heterogeneous.

5) It is favored if we can predict traffic speed with confi-
dence level. The confidence level is useful for people
who are in charge of traffic control and transportation
management. For instance, speed prediction can be
used for incident detection and the prediction can
give a possible incident warning to policemen. The
confidence level in this case can suggest policemen
which incident owns a higher priority than others if
more than one incident occurs at a time.

We need a traffic speed forecasting model to address the
above issues. Other than that, we hope the model can be
efficient enough so that the forecasting can be used in real
cases. We propose a method to predict traffic speed based
on a k Nearest Neighbors (kNN) and Gaussian Process
Regression (GPR) combined approach given massive data
which have spatial and temporal relationships. Gaussian
process is known to be good at dealing with spatio-temporal
relationships among data and can provide confidence level
for the prediction result. Combining kNN and GPR is mainly
an computation issue. Gaussian Process cannot be scaled
up easily for its cubic learning computation and quadratic
space requirement [3]. To look for a structured Gaussian
process, i.e., a Gaussian process with a structured covariance
matrix [4], we need to analyze how data are distributed
in the space which may not be possible for massively
generated data and for online prediction tasks. To work
around the problem, we combine kNN and GPR where we
adopt kNN to select informative data in the aspect of GPR
prediction performance. When the prediction performance
remains similar with or without the data, kNN may choose
to ignore them to make the GPR learning and inference

operated afterwards more efficiently.
We organize the rest of the paper as follows. In Section II,

we discuss some related work in the past. After that, we
introduce the proposed method in Section III. To evaluate the
proposed method, we first present a case study in Section IV
and show how well the performance is for the proposed
method on the case study dataset in Section V. In the end,
we conclude our contribution in Section VI.

II. PAST WORK

A. Large-scale Learning via kNN and Gaussian Process

k-nearest neighbors is a simple non-parametric algorithm
which can solve both classification and regression problems.
Apart from classification and regression, searching for near-
est neighbors is the key procedure of many useful algorithms
such as recommendation [5], dimensionality reduction [6],
computer networking [7], and so on. In the most naı̈ve imple-
mentation, kNN, as a lazy approach needs O(nD) to search
for closest neighbors given a new data for prediction where n
is the number of data points and D is the dimensionality. To
scale up to large-scale problems, one has to use techniques
such as kd-tree [8] for indexing, or to find “landmarks” in the
dataset so that any new data can be categorized as one close
to one of a few landmarks for classification or regression.
There are also some hardware efforts for kNN computation
acceleration [9], [10] for different applications. One has to
know that both kd-tree and the landmark approach rely on
indexing or building structures on the dataset, which may
not be trivial for the kNN query on a massive dataset and
on a dataset of high dimensionality.

Gaussian process needs O(n3) time for learning and
O(n2) space for storage [3]. That makes GPR not prac-
tical to large-scale problems. Many GP or GPR related
approaches for large-scale data basically look for “blocky”
structures in the dataset [4] so that we can compute ma-
trix inverse for smaller matrices instead for computation
accerleration. One may also find an efficient lazy approach
for real-time computation based on a set of Gaussian pro-
cesses [11].

Our method also belongs to a lazy approach. What is
different from the above work is that we first use kNN to
select the most influential neighbors for GPR computation.
Moreover, we take advantage of MapReduce framework
and use it to efficiently select kNN for large-scale data. In
the Hadoop environment, one input data will be split into
many 64-MB blocks, and each block is processed by a Map
task. To implement kNN in MapReduce architecture, our
idea is to find the local k neighbors based on each data
block. After that, the Reduce task may associate these
local neighbors from each Map task and extract the global
k neighbors of the input data from different Map tasks.



B. Big Data Framework

The MapReduce framework was proposed by Dean and
Ghemawat in 2004 [12]. The framework is well known
for its ability to deal with large-scale data in a distributed
manner on computing clusters. Map and Reduce are the
two key functions to implement the distributed computation
and developers can design their own functions according to
different applications. In the Map phase, we map large scale
data to a set of output key/value pairs as intermediate
data. Then, the intermediate data will be combined to the
same group if they share the same key. Afterwards, in
the Reduce phase, after receiving the sorted intermediate
data, the Reduce function merges the data of the same
key and compute an integrated value based on developers’
requirement. Our forecasting method is implemented on the
MapReduce platform.

C. Vehicle Traffic Prediction

The vehicle traffic prediction has a long history for its
practical purpose. A rich set of research was devoted in traf-
fic flow modeling, by various methods such as autoregressive
moving average (ARMA), autoregressive integrated moving
average (ARIMA) [13], Kalman filtering [14], particle filter-
ing [15]. Clearly, those methods use a generative approach
to model traffic data, which relies on strong assumptions
such as Markovian assumptions between data of consecutive
moments, or the stationarity of model parameters. The model
can fail for anomalous events. Especially, the above methods
cannot easily deal with sudden state or phase changes such
as incidental events on roads, severe weather conditions, or
abnormal rush hour patterns. In our approach, thanks to the
big data framework, referencing historical data of similar
patterns becomes possible and we have very little chance
to face unfamiliar patterns for prediction given a massive
historical data for learning. Second, we adopt GPR as part
of the prediction components which allows long-term inter-
actions between data. Moreover, we focus on modeling the
spatial and temporal relationships between different ITS or
non-ITS sensory data. To apply the above models for spatial-
temporal modeling other than GPR could be theoretically
intractable. We also need to point out that the above methods
may not scale up to large-scale data easily for their high
complexity computation. Recently, researchers have started
to use large-scale framework for ITS data analysis, such as
using distributed computation for acceleration [16].

III. PROPOSED METHOD

We propose a method to forecast traffic speed based
on a MapReduce framework. The proposed approach has
a few ingredients: kNN, Gaussian process regression and
the MapReduce module for computation performance en-
hancement. Ideally, we can adopt either kNN or GPR to
predict traffic speed on specific location and time given
past data. Apparently, the probabilistic Gaussian process is

Table I
NOTATIONS USED IN THIS WORK.

Notation Definition
h an instance of historical data
H historical dataset H ≡

{hi : i = 1, 2, · · · , n}
where n is the number of historical data

t test data, i.e., the next moment traffic
data for testing

h.x, h.y and t.x, t.y the feature vector and target value for
h and t, where x denotes the feature
vector and y denotes the target value

X = {hi.x}, Y = {hi.y}
and x∗ = t.x, y∗ = t.y

the whole historical and test feature
vector sets and target value sets

k the number of neighbors
KTable an array for storing k neighbors
d the distance two data or between h and

t
Sensor ID the unique sensor identifier of test data

more robust than kNN in its prediction performance. For
instance, to predict the traffic speed at certain location and
time, a few noisy data in the kNN neighborhood region
can affect the prediction result. Moreover, GPR is more
useful than kNN for its rich confidence level information.
However, GPR is generally computationally intensive. Given
the Gaussian process computation barrier, we have to solve
a small-scale problem by selecting the limited influential
data for GPR so that we can predict traffic speed efficiently.
In this work, we combine kNN and GPR for efficient traffic
speed prediction. We utilize kNN to select the “closest” data,
assumed to be the most informative data of the predicted
case to build a relatively small-scale Gaussian process and
use the Gaussian process for traffic forecasting. After all, we
use a MapReduce framework to find kNN and schedule
tasks wisely to enhance the prediction performance. We
discuss each of the components in the following subsections.
Before doing that, we introduce the notations that are used
in this work in Table I.

A. Gaussian Process Regression

Given a historical dataset H ≡ {hi = (xi, yi) : i =
1, 2, . . . , n} where xi denotes an input vector and yi ∈ R
denotes the target value that is associated with xi, we would
like to predict the traffic speed in the next moment (such
as next five minutes) by GPR. The goal of GPR is to find
a function f which can describe the relationship between
xi and yi. Gaussian process has good properties where a
Gaussian process can be completely specified by a mean
function m(x) and a covariance function k(x,x′), where x
or x′ represents two input feature vectors. We use a Gaussian
process with mean function m(x) and covariance function
k(x,x′) to describe the relation between x and y as follows:

f ∼ GP (m(x), k(x,x′)) . (1)

In the real world, the data are often noisy. To allow a small
difference between the true value and the observed data y,



we consider a Gaussian noise model, which is written below:

y = f(x) + ε, ε ∼ N (0, σ2
n) , (2)

where σ2
n controls the noise variance. To find the function f

in GPR, we have to decide an appropriate kernel function k,
that is, to define the pairwise relation between two feature
vectors x and x′. In this work, we focus on the traffic
data that consist of various ITS and non-ITS attributes
such as speed, occurrence, flow, visibility, as well as time
and location of the predicted data. To describe the relation
between two traffic data x and x′, we take the common
approach which is the squared exponential kernel function.
That is, the kernel function that contains the noise term is
written as follows:

k(x,x′) = σ2
f exp

(
− 1

2`2
‖x− x′‖2

)
+ σ2

nδ(x,x
′) , (3)

which is to describe covariance between x and x′, where
δ(x,x′) is the Kronecker delta function. Given the next
moment traffic conditions x∗, its traffic speed y∗ is predicted
by GPR as:

y∗ | x∗,X, Y ∼ GP (k(x∗,X)
[
k(X,X) + σ2

nI
]−1

Y,

k(x∗,x∗)− k(x∗,X)
[
k(X,X) + σ2

nI
]−1

k(X,x∗)) .
(4)

As we can see, the prediction provides both the predicted
value (mean) and the confidence level of the prediction
(variance).

Note that we aim at developing a method that can predict
the next moment traffic given all the past data. Why is it
necessary to do so? The historical data that is related to the
next moment prediction status could belong to a very old
moment. For instance, we want to predict a traffic condition
on a Christmas holiday and we may look for the traffic
condition at the same time last year. In this sense, we have to
store data for at least one year long so that data of similar
patterns can be extracted from the database. On the other
hand, the traffic condition is usually highly dynamic as time
goes by. To give the most reliable prediction, one way is to
frequently retrain the model and use the most recent model
for prediction. Given the two above thoughts, we propose a
lazy approach that can consider as many data as possible and
retrain the model as frequently as possible for the prediction.
One may prefer a wiser approach such as retraining the
model when it is really necessary to do so. What we want to
argue is that, given available computation resources in these
days, as simple as the proposed method can easily solve the
problem that may not be solvable before.

To make the prediction scalable to large-scale data, the
approach is generally focused on solving the matrix inverse
problem for smaller matrices. Alternatively, in our proposed
method, instead of working on GPR directly, we select
the most informative neighbors of x∗ by kNN for GPR
to obtain an approximated version of GPR result. In the

end, we can output the result efficiently without sacrificing
too much the prediction accuracy. Below we also discuss
some implementation details. After that, we show how the
proposed method is realized on the MapReduce framework.

1) Dataset and Attributes: We study the traffic data for
traffic speed prediction. An efficient prediction is based on
how we can catch the patterns for different time or different
locations from the historical data. Given the next moment
traffic condition, the kNN algorithm helps us to find the
data that are close to the condition. The traffic condition is
represented as a feature vector x which includes both of ITS
and non-ITS data as follows:

x = (weekday?, speed,flow, occupancy, visibility) , (5)

and the target value y is the speed data in the next moment.
The feature weekday? is a binary indicator feature which is
1 if the traffic condition occurs at a weekday moment and
0 otherwise. Note that we obtain the visibility information
from a weather database while other information is obtained
from highway sensors. As an alternative choice, we may also
include: 1) the location index, where we want to predict; 2)
the time index, when we want to predict, or 3) both as the
extra attributes in GPR, that we call spatial and temporal
information respectively. That is, including the extra spatial
and temporal information shall encourage kNN to select the
data closer to the predicted location and time for GPR.

2) Weighted Euclidean Distance: Given the traffic data
that consist of heterogeneous ITS and non-ITS attributes,
we have to normalize them to appropriate scales; after that,
we can comfortably define the metric for kNN and the
covariance of attributes. For each pair of historical data h
and test data t, we define their distance as:

d(h, t) =

√√√√ D∑
i=1

wi(hi − ti)2 (6)

where wi is the normalizing factor for the i-th attribute and
D is the number of features or dimensionality of the data
space.

B. MapReduce Framework for Massive kNN Computation

We use the MapReduce framework to select the most
important kNNs as the input of GPR. Given the framework,
we divide the kNN selection task into several tiny tasks for
distributed computation. Moreover, to further enhance the
performance, we use Support Vector Regression (SVR) [17],
[18] to learn how the MapReduce framework can be
improved by assigning different Map and Reduce slots to
different machines, further described below.

1) Map Phase: In the Map task, the MapReduce frame-
work will keep retrieving a pair of key and value from the
corresponding data block until all data have been exhausted.
The key is the file offset of data block and the value is
an instance from the data block.



In our proposed Map procedure, the first step is to load
next moment traffic condition t as the test data which
contains all the features from HDFS. After that, we initialize
a KTable for storing the k neighbors. For each instance h
from H, we calculate the distance d between h and t based
on traffic condition data (speed, flow, occupancy, visibility,
etc). After obtaining the distance, we decide whether or not
d and h will be inserted into KTable and key/value is
set as one of the intermediate data. We set the key as the
sensor ID of test data, and the value as (d, h).

2) Reduce Phase: In Reduce phase, we can get local
k neighbors from each Map task. Here, we also initialize
KTable for storing the global k neighbors. According to
local k neighbors, we aggregate these data and use the
same decision method in the Map phase to insert instances
into KTable. After processing all intermediate data from
Map tasks, KTable will store the global k neighbors. We
choose k neighbors based on three different criteria for the
prediction: with location index (spatial information), with
time index (temporal information), with both indices (spatio-
temporal information). Based on the different approaches,
we recalculate all the distances d in KTable and sort the
KTable again. The top k data in KTable may be different
for different approaches. Finally, we take top k data in
KTable to train a Gaussian process [3] and use the process
to predict traffic speed in the next moment.

IV. CASE STUDY

We evaluate the proposed method on a dataset that was
provided by Research Data Exchange (RDE) [19]. RDE is
a platform for ITS data sharing. Researchers and developers
can obtain many kinds of source data such as freeway
data, weather report, GPS, and so on. RDE contains nine
data groups that were collected in different areas such
as San Diego, Portland, etc. Each data group consists of
multiple datasets from different organizations. In this paper,
we choose the San Diego dataset for our experiments.
Next, we will introduce two main source data: freeway data
and weather report. We shall study the data based on the
proposed method.

Freeway Data: Freeway data contain freeway traffic
condition monitoring data. The data were obtained from
the California Freeway Performance Measurement System
(PeMS) [20]. The traffic data were collected by loop de-
tectors deployed in the California state. The loop detectors
collect the traffic data per 30 seconds. These data are also
aggregated to be five-minute, hourly, and daily data. In our
work, we use five-minute dataset and we extract the latitude,
longitude, speed, flow, and occupancy data from each sensor.
In Figure 1, we show different sensor readings: speed, flow
and occupancy collected on sensors of one location, but in
different days. The top two days are weekdays, the bottom
one belongs to a weekend case. We can observe that they
have different patterns in different days, especially between
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Figure 1. Traffic data collected in three different days: two from weekdays
and one from Satursday.

the weekday cases and the weekend case. Many people live
in suburbs and work in urban districts at weekdays. They
drive to return home after they get off from their work. That
is the reason why the flow values in the afternoon are higher
than the flow values in other time. The two weekday cases
own similar patterns. In the weekend, people have different
behavior such as they do not need to wake up early for work,
so the flow show different patterns from the weekday cases.
Different sensor readings have not just temporal relationship
but also spatial relationship. We can observe that the data
collected in similar time and nearby locations are likely to
own similar patterns (figure not shown).

Weather Report: The data is for weather monitoring
and forecasting. Obviously, weather conditions affect not
just weather itself, but also many things in our daily lives
including freeway traffic. The data were obtained from the
United States Government’s National Oceanic and Atmo-
spheric Administration (NOAA). The RDE dataset consists
of one year weather data in 2010. The weather data contain
multiple factors such as temperature, dew point, visibility,
and so on. In our work, we extract only visibility data, from
seven weather stations around San Diego.

V. EXPERIMENT RESULT

We conduct the experiments and organize them by a few
different scenarios to demonstrate that the proposed method
can predict traffic speed with high accuracy. For all the
experiments, the computing clusters is based on Hadoop
version 1.2.1 installed on one master node and four slave
nodes with CentOS 6.4 operating system. Further details of
the node information are shown in Table II.

A. Data Preparation

To evaluate the proposed method, we use San Diego data
from RDE dataset. We focus on I5N road section in San
Diego. The I5N road section consists of 92 sensors and these
sensors are deployed in both of the north bound and south
bound. In addition, there are seven weather sensors near
the region in this dataset. The ITS data were continuously



Table II
DETAILS OF THE COMPUTING CLUSTERS.

Master Node Slave Nodes
1 2 3 4

# CPUs 2 8 8 6 6
memory (GB) 10 5 8 5 6
disk (TB) 2 1 1 1 1
CPU Intel(R) Xeon(R) E5-2650 0 2.00GHz
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Figure 2. The left figure shows the five test sensors on I5N road section.
The right figure shows the sensor 3 speed data from 16:40 to 19:35 at
December 28, 2010.

collected all year long in 2010. For the weather information,
we choose the closest weather sensor to extract the visibility
data. We focus on the prediction accuracy of five test sensors
of I5N road section for all experiments, as shown in Fig 2
unless otherwise specified.

B. Experiment Result and Analysis

We show how to evaluate the proposed method by several
series of experiments. In the proposed kNN and GPR com-
bined approach, after finding the k neighbors from historical
traffic data, we use GPR to predict traffic speed with either
spatial, temporal, or spatio-temporal information. We have
several scenarios that consider different parameter settings,
different location/time characteristics, and different data size,
etc for the evaluation.

The basic experimental settings are as follows (if not
specified otherwise): we choose the k in kNN to be 100, and
we extract 5 to 70 instances for GPR by different approaches
in the Reduce function. Regarding to GPR, we set the
covariance function parameters as ` = 1000, σf = 10,
and σn = 2 as in Eq. 3. (further discussed in the next
paragraph.) To evaluate the proposed method, we used Mean
Absolute Error (MAE) which measures the average absolute
error between real speed values (Si) and forecasting result
(Fi):

MAE =
1

nt

nt∑
i=1

|Si − Fi| , (7)

where nt is the number of values that we want to predict.
We discuss different scenarios as follows.

1) Parameter Settings: The first question is to find as
best parameter set as we can for GPR. We extract the data
in all I5N sensors and weather sensors data from January 1,

Table III
PARAMETER TUNING, THE RIGHTMOST SETTING GIVES THE BEST

PERFORMANCE.

Mean Absolute Error
` = 1000 ` = 1000 ` = 1000 ` = 1000
σf = 1 σf = 10 σf = 1 σf = 10
σn = 1 σn = 1 σn = 2 σn = 2

w. Spatial 2.99 2.27 15.65 2.14*
w. Temporal 2.76 2.75 15.47 2.6*
w. Spatio-temporal 2.94 2.11 15.62 1.99*

*=The minimum value per row

2010 to December 27, 2010, then we choose sensor 3 (Fig 2)
and focus on the traffic prediction of sensor 3 at December
28, 2010, starting from 16:40 to 19:35. We study four
parameter settings. In this series, we set the k for kNN to
be 100 and extract 25 instances in all experiments. Table III
shows the result. First of all, among all different choices,
(`, σf , σn) = (1000, 10, 2) gives the best performance. In
this case, we expect some noise in the data and the prediction
may not perfectly match the input real data. To compare
between different approaches, the approach with both spatial
and temporal information is superior to others. We further
discussed this topic in the next few paragraphs.

2) Between Different Sensors and Time Periods: In
this scenario, we focus on five sensors shown in Fig 2 as
the test sensors. We compare the forecasting result between
five sensors and between different time periods. To do
that, we choose two days: Dec. 25, 2010 (weekend) and
Dec. 28, 2010 (weekday), and partition a day into three
periods: 00:00-08:00, 08:00-16:00, and 16:00-24:00 for the
comparison. The result is shown in Table IV. First of all, we
observe that the MAE are basically similar between different
nearby sensors and between different time periods when they
are close. That explains why the approach including both
spatial and temporal information is usually the best choice.
However, it is not always true for all cases. The sensor
speed values are generally influenced by traffic congestion
happened in the weekday afternoons. The traffic congestion
causes the speed values to be unstable. We can observe that
the forecasting result on the period of 16:00 to 24:00 are
worse than that in other time periods in the Tuesday weekday
(Dec. 28). In the weekend (Dec. 25), the speed values of the
whole day are relatively stable. The forecasting results of all
time periods are similar in this day.

3) Different Data Size for GPR: Following the same
experimental setting of the first scenario, we study the
performance of the proposed method using different data
size for GPR. Basically, we want to confirm that more data
can really improve the forecasting result. The answer is true.
In Fig 3, we see that more training data for GPR indeed give
better performance. The result is going to be stable as the
number of input instances goes larger than 65. To compare
between different approaches, considering only the spatial
information or both the spatial and temporal information at



Table IV
COMPARISON BETWEEN DIFFERENT SENSORS AND TIME PERIODS.

Mean Absolute Error
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Dec. 25 Sat
00:00-08:00 0.55 0.53 0.49 0.67 0.67
08:00-16:00 0.41 0.53 0.5 0.42 0.46
16:00-24:00 0.57 0.75 0.63 0.61 0.73
Dec. 28 Tue
00:00-08:00 0.49 0.84 0.85 0.45 0.47
08:00-16:00 0.71 0.9 0.81 0.58 0.7
16:00-24:00 1.13 1.55 1.56 1.95 1.37
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Figure 3. Different input instances for Gaussian process.

the same time outputs the best result in most cases. The
reason is again due to the usual traffic congestion in the
weekday afternoon. That makes the temporal information
not so reliable for prediction. One traffic condition now may
not imply a similar condition in the next moment.

4) Different Training Periods: Following the same
experimental settings from the first scenario, we test the
proposed method given different portions of the historical
data (or we call different training periods): from a couple of
months to nearly the whole year data. According to different
portions of the dataset, we use the same test sensor just
like in the first scenario to forecast the traffic speed. In this
scenario, we also compare three different approaches, which
are 1) using kNN only, 2) using the integrated kNN and
GPR, and 3) using the integrated kNN and GPR with both
spatial and temporal information as the attributes to be the
prediction method. Fig 4 shows the complete result. In the
original kNN, the result is based on the average value of k
neighbors and it does not consider the distance between the
next moment’s traffic condition and all its k neighbors. After
applying the GPR, it considers the distance in the covariance,
so the prediction can be more reliable in general. Moreover,
if we consider the spatial and temporal information as the
features in the kNN computation, the result can be further
improved.

5) Running Time Result: In this experiment, we
prepare different size of historical data. These historical
data are extracted from different number of sensors. Our
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Figure 4. Different Training Periods.
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Figure 5. Compare the running time between Non-MapReduce and
MapReduce environments.

kNN with GPR method is executed using either non-
MapReduce Java code run in a single machine or the
Hadoop MapReduce architecture. The single machine for
running non-MapReduce Java code is booted in Windows
Server 2012 R2, and it contains 32 CPU and 128 GB
memory. The other one is the computing cluster (Table II).
In each system environment, we run the proposed kNN and
GPR combined method five times and calculate the average
running time in each test data. Fig 5 shows the running time
result. In this result, Hadoop can dramatically reduce the
running time. If the input data is larger, performance will
be more significant. The maximum reducing time is around
69%. In fact, we can further reduce the running time by
tuning the Hadoop scheduling procedure because what we
face here are very similar prediction tasks through time. We
shall be able to take advantage of knowing what is coming
for the computation in the Hadoop environment.

C. Further Discussion

To predict traffic speed, traffic congestion is not the
only event on the freeway that we should consider. Many
incidents frequently happened on the freeway such as traffic
collision, vehicle fire, animal in traffic, and so on may
also significantly degrade traffic capacity. The RDE dataset
contains the incident report from California Highway Patrol
(CHP). Those incidents may block the traffic or some people
can get trouble on the freeway. Given the same traffic
data, we can also detect incidents that is considered a side



product of the proposed speed prediction method. To give a
concrete example, we observe a collision accident happened
between a sensor si and another sensor si+1 at 13:10 of
February 15, 2010. The driving direction follows the order of
sensors s1, s2, . . . , si, si+1 . . ., with the increasing indices.
We do observe the influence such as the upstream sen-
sors, s1, s2, . . . , si+1 detected significant decreasing speed
due to the traffic blockage while the downstream sensors
si+2, si+3, . . ., remained the similar speed on the freeway
(figure not shown). We believe that further systematical
study can provide a reliable solution for incident detection
for policemen patrols.

VI. CONCLUSION

We proposed a big data approach for traffic speed fore-
casting on an Intelligent Transportation System. We com-
bine kNN and Gaussian process regression based on the
MapReduce architecture. First, we select k nearest neigh-
bors from the historical data to the next moment predicted
traffic data. After that, GPR provides reliable speed pre-
diction with confidence level for possible decision making
done afterwards. The proposed method can keep updating
the forecasting model based on newly acquired data and
can give the most up-to-date prediction. We implemented all
the above algorithms on the MapReduce framework with
a mechanism that can learn to improve the MapReduce
computation as time goes by. The experiments show that
the average forecasting error is smaller than 2 miles/hr at
most cases. Compared to a non-MapReduce method, we
can achieve as much as 69% reduction in the computation
time by the Hadoop architecture.
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